<dfn id="w48us"></dfn><ul id="w48us"></ul>
  • <ul id="w48us"></ul>
  • <del id="w48us"></del>
    <ul id="w48us"></ul>
  • 房地產(chǎn)影響因素分析

    時(shí)間:2024-08-11 08:54:11 經(jīng)濟(jì)畢業(yè)論文 我要投稿
    • 相關(guān)推薦

    房地產(chǎn)影響因素分析

    房地產(chǎn)影響因素分析
     (背景)2002年以來(lái),我國(guó)商品房銷售額大幅攀升?帶動(dòng)了房地產(chǎn)開發(fā)和城市基礎(chǔ)設(shè)施投資的新一輪高速增長(zhǎng)。通過產(chǎn)業(yè)鏈的傳遞,進(jìn)而又拉動(dòng)鋼材、有色金屬、建材、石化等生產(chǎn)資料價(jià)格的快速上漲,刺激這些生產(chǎn)資料部門產(chǎn)能投資的成倍擴(kuò)張,最后導(dǎo)致全社會(huì)固定資產(chǎn)投資規(guī)模過大、增速過快情況的出現(xiàn)。房?jī)r(jià)過快上漲在推動(dòng)投資增長(zhǎng)過快的同時(shí),已經(jīng)成為抑制消費(fèi)的重要因素。
     房地產(chǎn)價(jià)格本身呈自然上漲趨勢(shì),房?jī)r(jià)中長(zhǎng)期趨勢(shì)總是看漲。隨著我國(guó)經(jīng)濟(jì)發(fā)展,居民可支配收入提高,民間資金雄厚,大量資金需要尋找投資渠道,而股票市場(chǎng)等投資渠道目前又處于低迷狀態(tài),這是房地產(chǎn)投資需求不斷擴(kuò)大的經(jīng)濟(jì)背景。強(qiáng)勁的CPI上漲說(shuō)明當(dāng)前的房?jī)r(jià)上漲并非孤立,是有其宏觀經(jīng)濟(jì)背景的。宏觀調(diào)控能否有效防止局部行業(yè)過熱出現(xiàn)反彈,其中的關(guān)鍵就是要繼續(xù)加強(qiáng)和完善對(duì)房地產(chǎn)業(yè)的調(diào)控。   (引言)國(guó)際上關(guān)于房地產(chǎn)有一種普遍的觀點(diǎn):人均收入超過1000美元,房地產(chǎn)市場(chǎng)呈現(xiàn)高速發(fā)展階段。歐美等發(fā)達(dá)國(guó)家基本都經(jīng)歷了這樣一個(gè)階段。我們這篇論文,主要探討房地產(chǎn)影響因素分析,主要從人均收入對(duì)房地產(chǎn)長(zhǎng)期發(fā)展的影響闡述。
     
    年份    X1    X2    X3     Y
    1990 2551.736 1510.16 222 704.3319
    1991 1111.236 1700.6 233.3 786.1935
    1992 590.5998 2026.6 253.4 994.6555
    1993 2897.019 2577.4 294.2 1291.456
    1994 3532.471 3496.2 367.8 1408.639
    1995 3983.081 4282.95 429.6 1590.863
    1996 4071.181 4838.9 467.4 1806.399
    1997 3527.536 5160.3 481.9 1997.161
    1998 2966.057 5425.1 479 2062.569
    1999 2818.805 5854 472.8 2052.6
    2000 2674.264 6279.98 476.6 2111.617
    2001 2830.688 6859.6 479.9 2169.719
    2002 2906.16 7702.8 475.1 2250.177
    2003 3011.424 8472.2 479.4 2359.499
    2004 3441.62 9421.6 495.2 2713.878

    房地產(chǎn)影響因素分析

    X1=建材成本(元/平方米 )  X2=居民人均收入(元)     X3=物價(jià)指數(shù)     Y=房地產(chǎn)價(jià)格(元/平方米)
    初定模型:Y=c+a1*x1 +a2*x2 +a3*x3+et
    Dependent Variable: Y
    Method: Least Squares
    Date: 06/05/05   Time: 23:04
    Sample: 1990 2004
    Included observations: 15
    Variable Coefficient Std. Error t-Statistic Prob. 
    X3 2.537578 0.590422 4.297908 0.0013
    X2 0.146495 0.020968 6.986568 0.0000
    X1 -0.018016 0.035019 -0.514447 0.6171
    C 33.20929 118.2747 0.280781 0.7841
    R-squared 0.983094     Mean dependent var 1753.317
    Adjusted R-squared 0.978483     S.D. dependent var 600.9536
    S.E. of regression 88.15143     Akaike info criterion 12.01917
    Sum squared resid 85477.42     Schwarz criterion 12.20798
    Log likelihood -86.14376     F-statistic 213.2186
    Durbin-Watson stat 1.504263     Prob(F-statistic) 0.000000

    一:多元線性回歸
       
              
    Dependent Variable: Y
    Method: Least Squares
    Date: 06/05/05   Time: 23:05
    Sample: 1990 2004
    Included observations: 15
    Variable Coefficient Std. Error t-Statistic Prob. 
    X1 0.336010 0.151084 2.223999 0.0445
    C 792.0169 453.4460 1.746662 0.1043
    R-squared 0.275612     Mean dependent var 1753.317
    Adjusted R-squared 0.219889     S.D. dependent var 600.9536
    S.E. of regression 530.7855     Akaike info criterion 15.51016
    Sum squared resid 3662533.     Schwarz criterion 15.60457
    Log likelihood -114.3262     F-statistic 4.946171
    Durbin-Watson stat 0.275870     Prob(F-statistic) 0.044490

    Dependent Variable: Y
    Method: Least Squares
    Date: 06/05/05   Time: 23:09
    Sample: 1990 2004
    Included observations: 15
    Variable Coefficient Std. Error t-Statistic Prob. 
    X3 5.501779 0.525075 10.47809 0.0000
    C -486.8605 220.1227 -2.211769 0.0455
    R-squared 0.894128     Mean dependent var 1753.317
    Adjusted R-squared 0.885984     S.D. dependent var 600.9536
    S.E. of regression 202.9191     Akaike info criterion 13.58706
    Sum squared resid 535290.2     Schwarz criterion 13.68146
    Log likelihood -99.90293     F-statistic 109.7903
    Durbin-Watson stat 0.440527     Prob(F-statistic) 0.000000

    Dependent Variable: Y
    Method: Least Squares
    Date: 06/05/05   Time: 23:10
    Sample: 1990 2004
    Included observations: 15
    Variable Coefficient Std. Error t-Statistic Prob. 
    X2 0.236347 0.015879 14.88417 0.0000
    C 561.9975 88.56333 6.345713 0.0000
    R-squared 0.944572     Mean dependent var 1753.317
    Adjusted R-squared 0.940308     S.D. dependent var 600.9536
    S.E. of regression 146.8243     Akaike info criterion 12.93992
    Sum squared resid 280245.9     Schwarz criterion 13.03432
    Log likelihood -95.04937     F-statistic 221.5384
    Durbin-Watson stat 0.475648     Prob(F-statistic) 0.000000

    Dependent Variable: Y
    Method: Least Squares
    Date: 06/07/05   Time: 21:42
    Sample: 1990 2004
    Included observations: 15
    Variable Coefficient Std. Error t-Statistic Prob. 
    X3 2.355833 0.458340 5.139923 0.0002
    X2 0.150086 0.019157 7.834714 0.0000
    C 37.56794 114.2991 0.328681 0.7481
    R-squared 0.982687     Mean dependent var 1753.317
    Adjusted R-squared 0.979802     S.D. dependent var 600.9536
    S.E. of regression 85.40783     Akaike info criterion 11.90961
    Sum squared resid 87533.98     Schwarz criterion 12.05122
    Log likelihood -86.32207     F-statistic 340.5649
    Durbin-Watson stat 1.408298     Prob(F-statistic) 0.000000


        得到結(jié)果發(fā)現(xiàn),x1的系數(shù)小,然后對(duì)y與x1回歸可決系數(shù)小,相關(guān)性差,剔出這個(gè)因素。因?yàn)閮r(jià)格更多取決于供需關(guān)系。
    修正之后為:Y=c+a2*x2+a3*x3+et
    二:多重線性分析:三個(gè)表如上:
        X2 與X3 存在多重共線性,
    1.000000  0.876073
     0.876073  1.000000

    Dependent Variable: Y
    Method: Least Squares
    Date: 06/05/05   Time: 23:09
    Sample: 1990 2004
    Included observations: 15
    Variable Coefficient Std. Error t-Statistic Prob. 
    X3 5.501779 0.525075 10.47809 0.0000
    C -486.8605 220.1227 -2.211769 0.0455
    R-squared 0.894128     Mean dependent var 1753.317
    Adjusted R-squared 0.885984     S.D. dependent var 600.9536
    S.E. of regression 202.9191     Akaike info criterion 13.58706
    Sum squared resid 535290.2     Schwarz criterion 13.68146
    Log likelihood -99.90293     F-statistic 109.7903
    Durbin-Watson stat 0.440527     Prob(F-statistic) 0.000000

    Sample: 1990 2004
    Included observations: 15
    Variable Coefficient Std. Error t-Statistic Prob. 
    X2 0.236347 0.015879 14.88417 0.0000
    C 561.9975 88.56333 6.345713 0.0000
    R-squared 0.944572     Mean dependent var 1753.317
    Adjusted R-squared 0.940308     S.D. dependent var 600.9536
    S.E. of regression 146.8243     Akaike info criterion 12.93992
    Sum squared resid 280245.9     Schwarz criterion 13.03432
    Log likelihood -95.04937     F-statistic 221.5384
    Durbin-Watson stat 0.475648     Prob(F-statistic) 0.000000

     由于引入物價(jià)指數(shù)改善小,所以模型僅一步改進(jìn)為:Y=c+a2*x2+et

    三:異方差檢驗(yàn):
      
    ARCH Test:
    F-statistic 1.315031     Probability 0.335173
    Obs*R-squared 3.963227     Probability 0.265462
        
    Test Equation:
    Dependent Variable: RESID^2
    Method: Least Squares
    Date: 06/05/05   Time: 23:46
    Sample(adjusted): 1993 2004
    Included observations: 12 after adjusting endpoints
    Variable Coefficient Std. Error t-Statistic Prob. 
    C 22737.94 10296.61 2.208295 0.0582
    RESID^2(-1) 0.241952 0.383144 0.631493 0.5453
    RESID^2(-2) -0.327769 0.404787 -0.809734 0.4415
    RESID^2(-3) -0.273720 0.378355 -0.723449 0.4900
    R-squared 0.330269     Mean dependent var 16705.23
    Adjusted R-squared 0.079120     S.D. dependent var 18205.33
    S.E. of regression 17470.29     Akaike info criterion 22.63559
    Sum squared resid 2.44E+09     Schwarz criterion 22.79723
    Log likelihood -131.8136     F-statistic 1.315031
    Durbin-Watson stat 1.842435     Prob(F-statistic) 0.335173

     

     ARCH=3.963<臨界值7.81473
     所以無(wú)異方差
     
     
    White Heteroskedasticity Test:
    F-statistic 0.159291     Probability 0.854522
    Obs*R-squared 0.387928     Probability 0.823687
        
    Test Equation:
    Dependent Variable: RESID^2
    Method: Least Squares
    Date: 06/05/05   Time: 23:46
    Sample: 1990 2004
    Included observations: 15
    Variable Coefficient Std. Error t-Statistic Prob. 
    C 31063.28 22612.20 1.373740 0.1946
    X2 -5.055754 9.640127 -0.524449 0.6095
    X2^2 0.000421 0.000907 0.464605 0.6505
    R-squared 0.025862     Mean dependent var 18683.06
    Adjusted R-squared -0.136494     S.D. dependent var 18673.13
    S.E. of regression 19906.77     Akaike info criterion 22.81236
    Sum squared resid 4.76E+09     Schwarz criterion 22.95397
    Log likelihood -168.0927     F-statistic 0.159291
    Durbin-Watson stat 1.357657     Prob(F-statistic) 0.854522

     

     WHITE=0.3879<臨界值7.81473
     無(wú)異方差。

    四:自相關(guān)分析:
      DW=0.4756
     查表的dl=1.077  du=1.361
     存在自相關(guān)
     廣義差分法修正:ρ=1-0.4756/2=0.7622
     
     
    Dependent Variable: DY
    Method: Least Squares
    Date: 06/06/05   Time: 00:18
    Sample(adjusted): 1991 2004
    Included observations: 14 after adjusting endpoints
    Variable Coefficient Std. Error t-Statistic Prob. 
    DX2 0.182086 0.034918 5.214655 0.0002
    C 236.5589 63.27388 3.738650 0.0028
    R-squared 0.693820     Mean dependent var 544.1620
    Adjusted R-squared 0.668305     S.D. dependent var 148.7133
    S.E. of regression 85.64840     Akaike info criterion 11.86994
    Sum squared resid 88027.77     Schwarz criterion 11.96124
    Log likelihood -81.08959     F-statistic 27.19263
    Durbin-Watson stat 1.584278     Prob(F-statistic) 0.000217

     得出:回歸后可決系數(shù)降低,考慮其他方法。
     1.迭代法:表:
       發(fā)現(xiàn)可決系數(shù)提高,F統(tǒng)計(jì)量提高,DW=1.5547〉1.361
     已經(jīng)無(wú)自相關(guān)。
    結(jié)論:Y-bY(-1)=c*(1-b)+a2*(x2-b*x2(-1))+et

    由下表的b=0.681
     C=561.9975    a2=0.236347    179.2772
     Y*= Y-0.681Y(-1)      X*= x2-0.681*x2(-1)
     Y*=179.2272 +0.2363X*+et
     
     

    Method: Least Squares
    Date: 06/07/05   Time: 20:57
    Sample(adjusted): 1991 2004
    Included observations: 14 after adjusting endpoints
    Variable Coefficient Std. Error t-Statistic Prob. 
    E2 0.680509 0.177696 3.829624 0.0024
    C 11.68773 24.88825 0.469608 0.6471
    R-squared 0.549989     Mean dependent var 15.32764
    Adjusted R-squared 0.512488     S.D. dependent var 133.2751
    S.E. of regression 93.05539     Akaike info criterion 12.03583
    Sum squared resid 103911.7     Schwarz criterion 12.12712
    Log likelihood -82.25081     F-statistic 14.66602
    Durbin-Watson stat 1.313042     Prob(F-statistic) 0.002397

     2.改進(jìn)模型方程(對(duì)數(shù)法,然后用迭代法):Ly-bLy(-1)= c*(1-b)+a2*(Lx2-b*Lx2(-1)
     可決系數(shù)很高,F(xiàn)統(tǒng)計(jì)量相對(duì)1中也有提高,DW=1.81>1.361
     無(wú)自相關(guān)。
     
    Dependent Variable: LY
    Method: Least Squares
    Date: 06/06/05   Time: 10:24
    Sample(adjusted): 1991 2004
    Included observations: 14 after adjusting endpoints
    Convergence achieved after 7 iterations
    Variable Coefficient Std. Error t-Statistic Prob. 
    LX2 0.586203 0.100243 5.847799 0.0001
    C 2.525810 0.882350 2.862594 0.0154
    AR(1) 0.567144 0.220457 2.572589 0.0259
    R-squared 0.980054     Mean dependent var 7.460096
    Adjusted R-squared 0.976428     S.D. dependent var 0.351331
    S.E. of regression 0.053941     Akaike info criterion -2.814442
    Sum squared resid 0.032006     Schwarz criterion -2.677501
    Log likelihood 22.70109     F-statistic 270.2458
    Durbin-Watson stat 1.810100     Prob(F-statistic) 0.000000
    Inverted AR Roots        .57


    Dependent Variable: E1
    Method: Least Squares
    Date: 06/07/05   Time: 21:00
    Sample(adjusted): 1991 2004
    Included observations: 14 after adjusting endpoints
    Variable Coefficient Std. Error t-Statistic Prob. 
    E2 0.501784 0.219561 2.285394 0.0413
    C 0.006639 0.015069 0.440600 0.6673
    R-squared 0.303258     Mean dependent var 0.007495
    Adjusted R-squared 0.245197     S.D. dependent var 0.064877
    S.E. of regression 0.056365     Akaike info criterion -2.782368
    Sum squared resid 0.038124     Schwarz criterion -2.691074
    Log likelihood 21.47658     F-statistic 5.223026
    Durbin-Watson stat 1.517853     Prob(F-statistic) 0.041274

     用1,2兩種修正,兩種效果都很好,都消除了自相關(guān),相比較2更好。
    所以,方程:b=0.502
      Y*= Ly-o.502*Ly(-1)   X*= Lx2-0.502*Lx2(-1)
    Y*=1.2579+0.5862X*+et

    以上就是通過分析和檢驗(yàn)得到的回歸方程。所以,人均收入水平的高低在一定程度上影響房地產(chǎn)價(jià)格。當(dāng)前的房地產(chǎn)價(jià)格增長(zhǎng)背后收入是不可忽略的因素。

    資料來(lái)源:中經(jīng)網(wǎng),國(guó)家統(tǒng)計(jì)局網(wǎng)站,

    【房地產(chǎn)影響因素分析】相關(guān)文章:

    影響審計(jì)質(zhì)量的因素分析06-08

    業(yè)務(wù)外包及其影響因素分析08-28

    知識(shí)共享方式及影響因素分析09-20

    內(nèi)部審計(jì)外包影響因素分析07-05

    審計(jì)證據(jù)數(shù)量的影響因素分析06-09

    服裝版型的影響因素之分析07-09

    房地產(chǎn)上市公司資本結(jié)構(gòu)影響因素實(shí)證分析08-24

    審計(jì)質(zhì)量影響因素及其改善分析09-30

    影響醫(yī)學(xué)檢驗(yàn)分析前質(zhì)量因素09-07

    影響糧食產(chǎn)量的相關(guān)因素分析06-24

    主站蜘蛛池模板: 久久性精品| 一本一本久久aa综合精品| 精品视频久久久久| 日产精品一线二线三线芒果| 成人精品一区二区三区在线观看| 亚洲精品乱码久久久久久| 94久久国产乱子伦精品免费| 亚洲AV日韩精品久久久久久久| 91亚洲精品自在在线观看| 精品人人妻人人澡人人爽人人| 国产微拍精品一区二区| 国产成人精品无码片区在线观看| 日本精品一区二区久久久| 99精品影院| 国产精品岛国久久久久| 亚洲国产精品嫩草影院在线观看| 国产精品成人啪精品视频免费| 91精品国产91久久综合| 亚洲国产精品成人精品无码区在线| 精品日本一区二区三区在线观看| 柠檬福利精品视频导航| 精品久久久久久亚洲精品| 亚洲视频在线精品| 欧美激情精品久久久久久久| 亚洲国产综合精品中文第一区| 91老司机深夜福利精品视频在线观看| 亚洲精品成人片在线观看精品字幕| 全国精品一区二区在线观看| 国产精品亚洲不卡一区二区三区| 51精品资源视频在线播放 | 永久免费精品影视网站| 国产欧美精品一区二区色综合| 日本精品一区二区三区在线观看 | 精品亚洲国产成AV人片传媒| 亚洲精品国产综合久久一线| 久久中文精品无码中文字幕| 久久se精品一区二区影院| 国语自产精品视频| 国内精品久久久久久久coent| 国产欧美精品专区一区二区| 国产精品极品|