<dfn id="w48us"></dfn><ul id="w48us"></ul>
  • <ul id="w48us"></ul>
  • <del id="w48us"></del>
    <ul id="w48us"></ul>
  • 基于粗集的神經網絡的項目風險評估

    時間:2024-09-17 11:14:46 計算機畢業論文 我要投稿

    基于粗集的神經網絡的項目風險評估

    [摘 要] 本篇論文我們介紹了基于粗集的BP神經網絡識別項目的風險并評估項目風險。粗集(RS)與神經網絡的集成反映了人類正常的思維機制。它融合了定性和定量的,精確和非確定的,連續和平行的方法。我們建立了粗集的神經網絡并進行屬性約簡的混合模型,給出了軟件項目風險在實際中的早期預警模型即評估模型,提出了有效的方法。
      [關鍵詞] 軟件項目風險管理 神經網絡 粗集
      
      本篇論文的中心是基于粗集的人工神經網絡(ANN)技術的高風險識別,這樣在制定開發計劃中,最大的減少風險發生的概率,形成對高風險的管理。
      一、模型結構的建立
      本文基于粗集的BP 神經網絡的風險分析模型,對項目的風險進行評估,為項目進行中的風險管理提供決策支持。在這個模型中主要是粗糙集預處理神經網絡系統,即用RS理論對ANN輸入端的樣本約簡,尋找屬性間關系,約簡掉與決策無關的屬性。簡化輸入信息的表達空間維數,簡化ANN結構。本論文在此理論基礎上,建立一種風險評估的模型結構。這個模型由三部分組成即:風險辨識單元庫、神經網絡單元、風險預警單元。
      1.風險辨識單元庫。由三個部分功能組成:歷史數據的輸入,屬性約簡和初始化數據. 這里用戶需提供歷史的項目風險系數。所謂項目風險系數,是在項目評價中根據各種客觀定量指標加權推算出的一種評價項目風險程度的客觀指標。計算的方法:根據項目完成時間、項目費用和效益投入比三個客觀指標,結合項目對各種資源的要求,確定三個指標的權值。項目風險系數可以表述成:r=f(w1,w2,w3,T,T/T0,S/S0,U/U0),R<1;式中: r 為風險系數;T 、T0分別為實際時間和計劃時間;S、S0分別為實際費用和計劃費用;U、U0分別為實際效能和預計效能;w1、w2、w3分別是時間、費用和效能的加權系數,而且應滿足w1+w2+w3=1的條件。
      2.神經網絡單元。完成風險辨識單元的輸入后,神經網絡單元需要先載入經初始化的核心風險因素的歷史數據,進行網絡中權值的訓練,可以得到輸入層與隱含層、隱含層與輸出層之間的權值和閥值。
      (1)選取核心特征數據作為輸入,模式對xp=[xp1,xp2,.,xpn ]T,dp(網絡期望輸出) 提供給網絡。用輸入模式xp,連接權系數wij及值hj計算各隱含單元的輸出。
      m
      Ypj=1/{1+exp[-(∑wijxpi-hj)]},i =1,2,.,m;j=1,2,Λ,n ,
      i=1
      (2)用隱含層輸出ypj,連接權系數wij及值h計算輸出單元的輸出
      m
      Yp=1/{1+exp[-(∑wjxpi-hj)]},i=1,2,.,m;j=1,2,Λ,n,
      i=1
      Yp=[y1,y2,……,yn]T
      (3)比較已知輸出與計算輸出, 計算下一次的隱含各層和輸出層之間新的連接權值及輸出神經元值。
      wj(k+1)=wj(k)+η(k)σpσpj+α[wj(k)-wj(k-1)]
      h(k+1)=h(k)+η(k)σp+α[h(k)-h(k-1)]
      η(k)=η0(1-t/(T+M))
      η0是初始步長;t是學習次數;T是總的迭代次數;M是一個正數,α∈(0,1)是動量系數。σp是一個與偏差有關的值,對輸出結點來說;σp=yp(1-yp)(dp-yp);對隱結點來說,因其輸出無法比較,所以經過反向推算;(4)用σpj、xpj、wij和h計算下一次的輸入層和隱含層之間新的連接權值及隱含神經元值。wij(k+1)=wij(k)+η(t)σpjxpi+α[wij(k)-wij(k-1)]
      3.風險預警單元
      根據風險評價系數的取值,可以將項目的風險狀況分為若干個區間。本文提出的劃分方法是按照5 個區間來劃分的:
      r<0.2項目的風險很低,損失發生的概率或者額度很小;
      0.2≤r<0.4項目的風險較低,但仍存在一定風險;
      0.4≤r<0.6項目的風險處于中等水平,有出現重大損失的可能;
      0.6≤r<0.8項目的風險較大,必須加強風險管理,采取避險措施;
      0.8≤r<1項目的風險極大,重大損失出現的概率很高,建議重新考慮對于項目的投資決策。
      總之,有許多因素影響著項目風險的各個對象,我們使用了用戶評級的方式,從風險評估單元中獲得評價系數五個等級。給出各風險指標的評價系數,衡量相關風險的大小。系數越低,項目風險越低;反之,系數越高,項目風險越高。
    主站蜘蛛池模板: 岛国精品一区免费视频在线观看| 欧美精品亚洲精品日韩专区va | 精品国产一区二区三区无码| 99精品人妻少妇一区二区| 欧美精品亚洲精品日韩传电影 | 欧美视频精品一区二区三区| 久久久久成人精品无码中文字幕| 国产午夜亚洲精品国产成人小说| 2018国产精华国产精品| 中国精品18videosex性中国| 国产呦小j女精品视频| 久久亚洲国产欧洲精品一| 热re99久久精品国99热| 午夜三级国产精品理论三级| 国产一级精品高清一级毛片| 久久久久夜夜夜精品国产| 国产在线精品免费aaa片| 亚洲午夜精品一级在线播放放| 国产午夜精品理论片| 亚洲精品一二区| 国产精品禁18久久久夂久| 亚洲国产精品福利片在线观看| 免费精品久久久久久中文字幕 | 亚洲av午夜成人片精品电影| 国产成人亚洲精品91专区手机 | 国产精品99久久久久久猫咪| 国产精品自拍一区| 2021久久国自产拍精品| 国产欧美日韩精品a在线观看| 亚洲国产精品无码久久久蜜芽| 欧美日韩专区麻豆精品在线| 精品视频久久久久| 国产免费久久精品99久久| 国产精品免费看久久久香蕉| 51国偷自产精品一区在线视频| 久久精品国产亚洲欧美| 麻豆精品久久久一区二区| 久久精品九九亚洲精品天堂| 国产精品福利一区二区久久| 91精品一区国产高清在线| 国产精品美女一区二区视频|