<dfn id="w48us"></dfn><ul id="w48us"></ul>
  • <ul id="w48us"></ul>
  • <del id="w48us"></del>
    <ul id="w48us"></ul>
  • 圖像的小波降噪

    時間:2024-07-19 05:25:53 數學畢業論文 我要投稿
    • 相關推薦

    圖像的小波降噪

    圖像的小波降噪
     

    摘要:圖像降噪1直是圖像處理領域1個研究得比較多的課題,也是1個熱點領域。其中小波變換降噪技術是被研究的最多1種技術,本文主要討論近幾年興起的值降噪技術。2維小波分析用于圖像降噪的步驟如下。
       (1)2維圖像信號的小波分解。在這1步,應當選擇合適的小波和恰當的分解層次(記為N),然后對待分析的2維圖像信號進行N層分解計算。
    (2)對分解后的高頻系數進行值量化。對于分解的每1層,選擇1個恰當的值,并對該層高頻系數進行軟值量化處理。
    (3)2維圖像信號的小波重構。同樣的,根據小波分解后的第N層的近似(低頻系數)和經過值量化處理后的各層細節(高頻系數),來計算2維信號的小波重構。
    還介紹了小波的數學基礎。如:小波變換,小波離散及框架,多分辨率分析和Mallat算法的信號分解和重建過程。
    圖像信號的小波降噪步驟和1維信號的降噪步驟完全相同,所不同的是,處理工具是用2維小波分析工具代替了1維小波分析工具。利用MATLAB 7 ,通過具體的例子來說明如何利用小波分析進行圖像降噪這個問題。
       關鍵字:圖像降噪;小波分解;值量化;小波重構


    Denoising Image by Using Wavelet
     

    Abstract:Image noise reduction has been an area of image processing more research topics, as well as a hot field. Wavelet transform noise suppression technology is a study of the most technical, In this paper, we mainly discusses the noise suppression technology of noise threshold which is a method rising in recent years. Wavelet analysis for the two-dimensional image noise reduction steps are as follows.
    (1) The wavelet decomposition of two-dimensional image. In this step, we should choose a suitable and appropriate wavelet decomposition levels (recorded as N), then decompose the 2-D analyzed image signal into N layer decomposition.
    (2) Threshold Quantified about the high-frequency coefficients decomposed. For each level of decomposition, we choice an appropriate threshold, and decide the quantity of the soft threshold for high-frequency coefficients of this layer.
    (3) The reconstruction of two-dimensional image signal by using wavelet. Similarly, according to the approximation of the Nth level (coefficient of low frequency) decomposed by using wavelet and the various details (coefficient of high-frequency) after quantified for the threshold values, calculate the wavelet reconstruction for the two-dimensional signal.
    The mathematical base of wavelet also is introduced, such as: wavelet’s transformation, discrete wavelet and framework, multi-resolution analysis, Mallat algorithm for the process of decomposition and reconstruction of a signal.
    The steps of noise reduction by using wavelet for image signal are identical to the steps of one-dimensional signal noise reduction. The only difference is the process tools. It is using two-dimensional wavelet analysis tools instead of one-dimensional wavelet analysis tools. By using MATLAB 7, through specific examples illustrate how to use wavelet analysis to denoise for an image.
    Keywords: image noise reduction ( denoise of a image); decomposition applying wavelet; quantization of a threshold、reconstruction by using wavelet

    【圖像的小波降噪】相關文章:

    基于小波閾值的信號降噪方法03-07

    基于離散小波變換和圖像融合的彩色圖像數字水印算法03-07

    基于嵌入式思想的小波圖像壓縮研究03-20

    基于提升小波構造在圖像去噪的應用研究03-07

    一種基于混沌和小波理論的圖像加密技術的實現03-07

    基于小波變換的諧波檢測法03-28

    小波轉換影像壓縮模式之研究03-18

    圖像時代的文學03-08

    小波變換在信息隱藏中的應用研究03-07

    主站蜘蛛池模板: 少妇亚洲免费精品| 久久亚洲精品中文字幕| 亚洲AV无码久久精品狠狠爱浪潮| 久久久久免费精品国产| 一本之道av不卡精品| 亚洲国产精品欧美日韩一区二区| 亚洲av永久无码精品古装片| 国产精品国产三级国产潘金莲| 国产亚洲精品自在久久| 亚洲精品永久在线观看| 国产精品亚洲欧美大片在线看 | 精品亚洲永久免费精品| 中文字幕精品视频在线| 精品乱码久久久久久夜夜嗨| 欧美精品亚洲精品日韩专区va| 无码国产精品一区二区免费3p | 华人亚洲欧美精品国产| 人妻少妇精品视频二区| 日韩熟女精品一区二区三区| 国产精品无打码在线播放| 久久99国产精品久久99| 国产精品9999久久久久| 无码国产精品一区二区免费式芒果| 午夜精品久久久久久影视777| 国产午夜精品理论片| 91在线手机精品超级观看| 国产精品自产拍在线观看| 国产精品亚洲一区二区三区在线 | 成人国产一区二区三区精品| 91视频国产精品| 精品性影院一区二区三区内射| 亚洲精品在线视频| 亚洲国产精品狼友中文久久久| 精品久人妻去按摩店被黑人按中出| jizz国产精品| 中文字幕亚洲精品| 87国产私拍福利精品视频| 欧美精品人爱c欧美精品| 99久久精品国产高清一区二区| 国产精品午睡沙发系列| 99久久er这里只有精品18|