<dfn id="w48us"></dfn><ul id="w48us"></ul>
  • <ul id="w48us"></ul>
  • <del id="w48us"></del>
    <ul id="w48us"></ul>
  • 常用排序算法之JavaScript實(shí)現(xiàn)代碼段

    時(shí)間:2024-06-04 23:34:05 JavaScript 我要投稿
    • 相關(guān)推薦

    常用排序算法之JavaScript實(shí)現(xiàn)代碼段

      常用排序算法在JavaScript中要怎么實(shí)現(xiàn),下面YJBYS小編為你帶來代碼段和講解,希望對你有所幫助!

      1、插入排序

      1)算法簡介

      插入排序(Insertion-Sort)的算法描述是一種簡單直觀的排序算法。它的工作原理是通過構(gòu)建有序序列,對于未排序數(shù)據(jù),在已排序序列中從后向前掃描,找到相應(yīng)位置并插入。插入排序在實(shí)現(xiàn)上,通常采用in-place排序(即只需用到O(1)的額外空間的排序),因而在從后向前掃描過程中,需要反復(fù)把已排序元素逐步向后挪位,為最新元素提供插入空間。

      2)算法描述和實(shí)現(xiàn)

      一般來說,插入排序都采用in-place在數(shù)組上實(shí)現(xiàn)。具體算法描述如下:

      從第一個(gè)元素開始,該元素可以認(rèn)為已經(jīng)被排序;

      取出下一個(gè)元素,在已經(jīng)排序的元素序列中從后向前掃描;

      如果該元素(已排序)大于新元素,將該元素移到下一位置;

      重復(fù)步驟3,直到找到已排序的元素小于或者等于新元素的位置;

      將新元素插入到該位置后;

      重復(fù)步驟2~5。

      JavaScript代碼實(shí)現(xiàn):

      function insertionSort(array) {

      if (Object.prototype.toString.call(array).slice(8, -1) === 'Array') {

      for (var i = 1; i < array.length; i++) {

      var key = array[i];

      var j = i - 1;

      while (j >= 0 && array[j] > key) {

      array[j + 1] = array[j];

      j--;

      }

      array[j + 1] = key;

      }

      return array;

      } else {

      return 'array is not an Array!';

      }

      }

      3)算法分析

      最佳情況:輸入數(shù)組按升序排列。T(n) = O(n)

      最壞情況:輸入數(shù)組按降序排列。T(n) = O(n2)

      平均情況:T(n) = O(n2)

      二、二分插入排序

      1)算法簡介

      二分插入(Binary-insert-sort)排序是一種在直接插入排序算法上進(jìn)行小改動的排序算法。其與直接插入排序算法最大的區(qū)別在于查找插入位置時(shí)使用的是二分查找的方式,在速度上有一定提升。

      2)算法描述和實(shí)現(xiàn)

      一般來說,插入排序都采用in-place在數(shù)組上實(shí)現(xiàn)。具體算法描述如下:

      從第一個(gè)元素開始,該元素可以認(rèn)為已經(jīng)被排序;

      取出下一個(gè)元素,在已經(jīng)排序的元素序列中二分查找到第一個(gè)比它大的數(shù)的位置;

      將新元素插入到該位置后;

      重復(fù)上述兩步。

      JavaScript代碼實(shí)現(xiàn):

      function binaryInsertionSort(array) {

      if (Object.prototype.toString.call(array).slice(8, -1) === 'Array') {

      for (var i = 1; i < array.length; i++) {

      var key = array[i], left = 0, right = i - 1;

      while (left <= right) {

      var middle = parseInt((left + right) / 2);

      if (key < array[middle]) {

      right = middle - 1;

      } else {

      left = middle + 1;

      }

      }

      for (var j = i - 1; j >= left; j--) {

      array[j + 1] = array[j];

      }

      array[left] = key;

      }

      return array;

      } else {

      return 'array is not an Array!';

      }

      }

      3)算法分析

      最佳情況:T(n) = O(nlogn)

      最差情況:T(n) = O(n2)

      平均情況:T(n) = O(n2)

      三、選擇排序

      1)算法簡介

      選擇排序(Selection-sort)是一種簡單直觀的排序算法。它的工作原理:首先在未排序序列中找到最小(大)元素,存放到排序序列的起始位置,然后,再從剩余未排序元素中繼續(xù)尋找最小(大)元素,然后放到已排序序列的末尾。以此類推,直到所有元素均排序完畢。

      2)算法描述和實(shí)現(xiàn)

      n個(gè)記錄的直接選擇排序可經(jīng)過n-1趟直接選擇排序得到有序結(jié)果。具體算法描述如下:

      初始狀態(tài):無序區(qū)為R[1..n],有序區(qū)為空;

      第i趟排序(i=1,2,3…n-1)開始時(shí),當(dāng)前有序區(qū)和無序區(qū)分別為R[1..i-1]和R(i..n)。該趟排序從當(dāng)前無序區(qū)中選出關(guān)鍵字最小的記錄 R[k],將它與無序區(qū)的第1個(gè)記錄R交換,使R[1..i]和R[i+1..n)分別變?yōu)橛涗泜(gè)數(shù)增加1個(gè)的新有序區(qū)和記錄個(gè)數(shù)減少1個(gè)的新無序區(qū);

      n-1趟結(jié)束,數(shù)組有序化了。

      JavaScript代碼實(shí)現(xiàn):

      function selectionSort(array) {

      if (Object.prototype.toString.call(array).slice(8, -1) === 'Array') {

      var len = array.length, temp;

      for (var i = 0; i < len - 1; i++) {

      var min = array[i];

      for (var j = i + 1; j < len; j++) {

      if (array[j] < min) {

      temp = min;

      min = array[j];

      array[j] = temp;

      }

      }

      array[i] = min;

      }

      return array;

      } else {

      return 'array is not an Array!';

      }

      }

      3)算法分析

      最佳情況:T(n) = O(n2)

      最差情況:T(n) = O(n2)

      平均情況:T(n) = O(n2)

      四、冒泡排序

      1)算法簡介

      冒泡排序是一種簡單的排序算法。它重復(fù)地走訪過要排序的數(shù)列,一次比較兩個(gè)元素,如果它們的順序錯(cuò)誤就把它們交換過來。走訪數(shù)列的工作是重復(fù)地進(jìn)行直到?jīng)]有再需要交換,也就是說該數(shù)列已經(jīng)排序完成。這個(gè)算法的名字由來是因?yàn)樵叫〉脑貢?jīng)由交換慢慢“浮”到數(shù)列的頂端。

      2)算法描述和實(shí)現(xiàn)

      具體算法描述如下:

      比較相鄰的元素。如果第一個(gè)比第二個(gè)大,就交換它們兩個(gè);

      對每一對相鄰元素作同樣的工作,從開始第一對到結(jié)尾的最后一對,這樣在最后的元素應(yīng)該會是最大的數(shù);

      針對所有的元素重復(fù)以上的步驟,除了最后一個(gè);

      重復(fù)步驟1~3,直到排序完成。

      JavaScript代碼實(shí)現(xiàn):

      function bubbleSort(array) {

      if (Object.prototype.toString.call(array).slice(8, -1) === 'Array') {

      var len = array.length, temp;

      for (var i = 0; i < len - 1; i++) {

      for (var j = len - 1; j >= i; j--) {

      if (array[j] < array[j - 1]) {

      temp = array[j];

      array[j] = array[j - 1];

      array[j - 1] = temp;

      }

      }

      }

      return array;

      } else {

      return 'array is not an Array!';

      }

      }

      3)算法分析

      最佳情況:T(n) = O(n)

      最差情況:T(n) = O(n2)

      平均情況:T(n) = O(n2)

      五、快速排序

      1)算法簡介

      快速排序的基本思想:通過一趟排序?qū)⒋庞涗浄指舫瑟?dú)立的兩部分,其中一部分記錄的關(guān)鍵字均比另一部分的關(guān)鍵字小,則可分別對這兩部分記錄繼續(xù)進(jìn)行排序,以達(dá)到整個(gè)序列有序。

      2)算法描述和實(shí)現(xiàn)

      快速排序使用分治法來把一個(gè)串(list)分為兩個(gè)子串(sub-lists)。具體算法描述如下:

      從數(shù)列中挑出一個(gè)元素,稱為 "基準(zhǔn)"(pivot);

      重新排序數(shù)列,所有元素比基準(zhǔn)值小的擺放在基準(zhǔn)前面,所有元素比基準(zhǔn)值大的擺在基準(zhǔn)的后面(相同的數(shù)可以到任一邊)。在這個(gè)分區(qū)退出之后,該基準(zhǔn)就處于數(shù)列的中間位置。這個(gè)稱為分區(qū)(partition)操作;

      遞歸地(recursive)把小于基準(zhǔn)值元素的子數(shù)列和大于基準(zhǔn)值元素的子數(shù)列排序。

      JavaScript代碼實(shí)現(xiàn):

      //方法一

      function quickSort(array, left, right) {

      if (Object.prototype.toString.call(array).slice(8, -1) === 'Array' && typeof left === 'number' && typeof right === 'number') {

      if (left < right) {

      var x = array[right], i = left - 1, temp;

      for (var j = left; j <= right; j++) {

      if (array[j] <= x) {

      i++;

      temp = array[i];

      array[i] = array[j];

      array[j] = temp;

      }

      }

      quickSort(array, left, i - 1);

      quickSort(array, i + 1, right);

      };

      } else {

      return 'array is not an Array or left or right is not a number!';

      }

      }

      var aaa = [3, 5, 2, 9, 1];

      quickSort(aaa, 0, aaa.length - 1);

      console.log(aaa);

      //方法二

      var quickSort = function(arr) {

      if (arr.length <= 1) { return arr; }

      var pivotIndex = Math.floor(arr.length / 2);

      var pivot = arr.splice(pivotIndex, 1)[0];

      var left = [];

      var right = [];

      for (var i = 0; i < arr.length; i++){

      if (arr[i] < pivot) {

      left.push(arr[i]);

      } else {

      right.push(arr[i]);

      }

      }

      return quickSort(left).concat([pivot], quickSort(right));

      };

      3)算法分析

      最佳情況:T(n) = O(nlogn)

      最差情況:T(n) = O(n2)

      平均情況:T(n) = O(nlogn)

      六、堆排序

      1)算法簡介

      堆排序(Heapsort)是指利用堆這種數(shù)據(jù)結(jié)構(gòu)所設(shè)計(jì)的一種排序算法。堆積是一個(gè)近似完全二叉樹的結(jié)構(gòu),并同時(shí)滿足堆積的性質(zhì):即子結(jié)點(diǎn)的鍵值或索引總是小于(或者大于)它的父節(jié)點(diǎn)。

      2)算法描述和實(shí)現(xiàn)

      具體算法描述如下:

      將初始待排序關(guān)鍵字序列(R1,R2....Rn)構(gòu)建成大頂堆,此堆為初始的無序區(qū);

      將堆頂元素R[1]與最后一個(gè)元素R[n]交換,此時(shí)得到新的無序區(qū)(R1,R2,......Rn-1)和新的有序區(qū)(Rn),且滿足R[1,2...n-1]<=R[n];

      由于交換后新的堆頂R[1]可能違反堆的性質(zhì),因此需要對當(dāng)前無序區(qū)(R1,R2,......Rn-1)調(diào)整為新堆,然后再次將R[1]與無序區(qū)最后一個(gè)元素交換,得到新的無序區(qū)(R1,R2....Rn-2)和新的有序區(qū)(Rn-1,Rn)。不斷重復(fù)此過程直到有序區(qū)的元素個(gè)數(shù)為n-1,則整個(gè)排序過程完成。

      JavaScript代碼實(shí)現(xiàn):

      /*方法說明:堆排序

      @param array 待排序數(shù)組*/

      function heapSort(array) {

      if (Object.prototype.toString.call(array).slice(8, -1) === 'Array') {

      //建堆

      var heapSize = array.length, temp;

      for (var i = Math.floor(heapSize / 2); i >= 0; i--) {

      heapify(array, i, heapSize);

      }

      //堆排序

      for (var j = heapSize - 1; j >= 1; j--) {

      temp = array[0];

      array[0] = array[j];

      array[j] = temp;

      heapify(array, 0, --heapSize);

      }

      } else {

      return 'array is not an Array!';

      }

      }

      /*方法說明:維護(hù)堆的性質(zhì)

      @param arr 數(shù)組

      @param x 數(shù)組下標(biāo)

      @param len 堆大小*/

      function heapify(arr, x, len) {

      if (Object.prototype.toString.call(arr).slice(8, -1) === 'Array' && typeof x === 'number') {

      var l = 2 * x, r = 2 * x + 1, largest = x, temp;

      if (l < len && arr[l] > arr[largest]) {

      largest = l;

      }

      if (r < len && arr[r] > arr[largest]) {

      largest = r;

      }

      if (largest != x) {

      temp = arr[x];

      arr[x] = arr[largest];

      arr[largest] = temp;

      heapify(arr, largest, len);

      }

      } else {

      return 'arr is not an Array or x is not a number!';

      }

      }

      3)算法分析

      最佳情況:T(n) = O(nlogn)

      最差情況:T(n) = O(nlogn)

      平均情況:T(n) = O(nlogn)

      七、歸并排序

      1)算法簡介

      歸并排序是建立在歸并操作上的一種有效的排序算法。該算法是采用分治法(Divide and Conquer)的一個(gè)非常典型的應(yīng)用。歸并排序是一種穩(wěn)定的排序方法。將已有序的子序列合并,得到完全有序的序列;即先使每個(gè)子序列有序,再使子序列段間有序。若將兩個(gè)有序表合并成一個(gè)有序表,稱為2-路歸并。

      2)算法描述和實(shí)現(xiàn)

      具體算法描述如下:

      把長度為n的輸入序列分成兩個(gè)長度為n/2的子序列;

      對這兩個(gè)子序列分別采用歸并排序;

      將兩個(gè)排序好的子序列合并成一個(gè)最終的排序序列。

      JavaScript代碼實(shí)現(xiàn):

      function mergeSort(array, p, r) {

      if (p < r) {

      var q = Math.floor((p + r) / 2);

      mergeSort(array, p, q);

      mergeSort(array, q + 1, r);

      merge(array, p, q, r);

      }

      }

      function merge(array, p, q, r) {

      var n1 = q - p + 1, n2 = r - q, left = [], right = [], m = n = 0;

      for (var i = 0; i < n1; i++) {

      left[i] = array[p + i];

      }

      for (var j = 0; j < n2; j++) {

      right[j] = array[q + 1 + j];

      }

      left[n1] = right[n2] = Number.MAX_VALUE;

      for (var k = p; k <= r; k++) {

      if (left[m] <= right[n]) {

      array[k] = left[m];

      m++;

      } else {

      array[k] = right[n];

      n++;

      }

      }

      }

      3)算法分析

      最佳情況:T(n) = O(n)

      最差情況:T(n) = O(nlogn)

      平均情況:T(n) = O(nlogn)

      八、桶排序

      1)算法簡介

      桶排序 (Bucket sort)的工作的原理:假設(shè)輸入數(shù)據(jù)服從均勻分布,將數(shù)據(jù)分到有限數(shù)量的桶里,每個(gè)桶再分別排序(有可能再使用別的排序算法或是以遞歸方式繼續(xù)使用桶排序進(jìn)行排序)。

      2)算法描述和實(shí)現(xiàn)

      具體算法描述如下:

      設(shè)置一個(gè)定量的數(shù)組當(dāng)作空桶;

      遍歷輸入數(shù)據(jù),并且把數(shù)據(jù)一個(gè)一個(gè)放到對應(yīng)的桶里去;

      對每個(gè)不是空的桶進(jìn)行排序;

      從不是空的桶里把排好序的數(shù)據(jù)拼接起來。

      JavaScript代碼實(shí)現(xiàn):

      /*方法說明:桶排序

      @param array 數(shù)組

      @param num 桶的數(shù)量*/

      function bucketSort(array, num) {

      if (array.length <= 1) {

      return array;

      }

      var len = array.length, buckets = [], result = [], min = max = array[0], regex = '/^[1-9]+[0-9]*$/', space, n = 0;

      num = num || ((num > 1 && regex.test(num)) ? num : 10);

      for (var i = 1; i < len; i++) {

      min = min <= array[i] ? min : array[i];

      max = max >= array[i] ? max : array[i];

      }

      space = (max - min + 1) / num;

      for (var j = 0; j < len; j++) {

      var index = Math.floor((array[j] - min) / space);

      if (buckets[index]) { // 非空桶,插入排序

      var k = buckets[index].length - 1;

      while (k >= 0 && buckets[index][k] > array[j]) {

      buckets[index][k + 1] = buckets[index][k];

      k--;

      }

      buckets[index][k + 1] = array[j];

      } else { //空桶,初始化

      buckets[index] = [];

      buckets[index].push(array[j]);

      }

      }

      while (n < num) {

      result = result.concat(buckets[n]);

      n++;

      }

      return result;

      }

      3)算法分析

      桶排序最好情況下使用線性時(shí)間O(n),桶排序的時(shí)間復(fù)雜度,取決與對各個(gè)桶之間數(shù)據(jù)進(jìn)行排序的時(shí)間復(fù)雜度,因?yàn)槠渌糠值臅r(shí)間復(fù)雜度都為O(n)。很顯然,桶劃分的越小,各個(gè)桶之間的數(shù)據(jù)越少,排序所用的時(shí)間也會越少。但相應(yīng)的空間消耗就會增大。

      九、計(jì)數(shù)排序

      1)算法簡介

      計(jì)數(shù)排序(Counting sort)是一種穩(wěn)定的排序算法。計(jì)數(shù)排序使用一個(gè)額外的數(shù)組C,其中第i個(gè)元素是待排序數(shù)組A中值等于i的元素的個(gè)數(shù)。然后根據(jù)數(shù)組C來將A中的元素排到正確的位置。它只能對整數(shù)進(jìn)行排序。

      2)算法描述和實(shí)現(xiàn)

      具體算法描述如下:

      找出待排序的數(shù)組中最大和最小的元素;

      統(tǒng)計(jì)數(shù)組中每個(gè)值為i的元素出現(xiàn)的次數(shù),存入數(shù)組C的第i項(xiàng);

      對所有的計(jì)數(shù)累加(從C中的第一個(gè)元素開始,每一項(xiàng)和前一項(xiàng)相加);

      反向填充目標(biāo)數(shù)組:將每個(gè)元素i放在新數(shù)組的第C(i)項(xiàng),每放一個(gè)元素就將C(i)減去1。

      JavaScript代碼實(shí)現(xiàn):

      function countingSort(array) {

      var len = array.length, B = [], C = [], min = max = array[0];

      for (var i = 0; i < len; i++) {

      min = min <= array[i] ? min : array[i];

      max = max >= array[i] ? max : array[i];

      C[array[i]] = C[array[i]] ? C[array[i]] + 1 : 1;

      }

      for (var j = min; j < max; j++) {

      C[j + 1] = (C[j + 1] || 0) + (C[j] || 0);

      }

      for (var k = len - 1; k >=0; k--) {

      B[C[array[k]] - 1] = array[k];

      C[array[k]]--;

      }

      return B;

      }

      3)算法分析

      當(dāng)輸入的元素是n 個(gè)0到k之間的整數(shù)時(shí),它的運(yùn)行時(shí)間是 O(n + k)。計(jì)數(shù)排序不是比較排序,排序的速度快于任何比較排序算法。由于用來計(jì)數(shù)的數(shù)組C的長度取決于待排序數(shù)組中數(shù)據(jù)的范圍(等于待排序數(shù)組的最大值與最小值的差加上1),這使得計(jì)數(shù)排序?qū)τ跀?shù)據(jù)范圍很大的數(shù)組,需要大量時(shí)間和內(nèi)存。

    【常用排序算法之JavaScript實(shí)現(xiàn)代碼段】相關(guān)文章:

    JavaScript實(shí)現(xiàn)網(wǎng)頁刷新代碼段03-25

    網(wǎng)頁程序設(shè)計(jì)之實(shí)用JavaScript代碼段03-06

    關(guān)jQuery彈出窗口簡單實(shí)現(xiàn)代碼-javascript編程03-30

    高效編寫JavaScript代碼的技巧03-10

    在Java中執(zhí)行JavaScript代碼04-01

    關(guān)于ASP.NET使用JavaScript顯示信息提示窗口實(shí)現(xiàn)原理及代碼03-30

    將php實(shí)現(xiàn)過濾UBB代碼04-01

    常用的JavaScript模式03-10

    JavaScript常用方法匯總03-08

    主站蜘蛛池模板: 国产在线精品观看免费观看| 久久免费国产精品| 国产亚洲一区二区精品| 久久久99精品成人片中文字幕| 久久精品国产亚洲AV嫖农村妇女 | 免费精品视频在线| aaa级精品久久久国产片| 亚洲精品97久久中文字幕无码| 999国产精品视频| 成人区精品一区二区不卡| 亚洲欧美日韩精品专区| 国产精品一区12p| 精品国产一区二区三区免费| 亚洲av永久无码精品古装片 | 久久免费国产精品| 99久re热视频这里只有精品6| 国产成人精品免费久久久久| 伊人精品视频在线| 麻豆国产精品VA在线观看不卡| 99精品电影一区二区免费看| 精品亚洲综合久久中文字幕| 国产精品久线在线观看| 精品国产一区二区三区色欲| 尤物国精品午夜福利视频| 免费精品精品国产欧美在线欧美高清免费一级在线 | 97精品国产91久久久久久| 无码精品A∨在线观看| 婷婷成人国产精品| 蜜臀av无码人妻精品| 精品99又大又爽又硬少妇毛片| 国产精品极品美女自在线观看免费| 亚洲人成亚洲精品| 欧美一卡2卡3卡四卡海外精品| 国产韩国精品一区二区三区久久| 国内精品久久久久伊人av| 日本VA欧美VA欧美VA精品| 亚洲精品无码久久久影院相关影片 | 91原创国产精品| 成人国产精品999视频| 91精品国产福利在线导航| 97久久精品无码一区二区|