<dfn id="w48us"></dfn><ul id="w48us"></ul>
  • <ul id="w48us"></ul>
  • <del id="w48us"></del>
    <ul id="w48us"></ul>
  • 高中數(shù)學(xué)《圓錐曲線定義的運(yùn)用》教學(xué)案例的反思

    時(shí)間:2022-07-21 13:48:57 高中教學(xué)反思 我要投稿
    • 相關(guān)推薦

    高中數(shù)學(xué)《圓錐曲線定義的運(yùn)用》教學(xué)案例的反思

      一、教學(xué)內(nèi)容分析

    高中數(shù)學(xué)《圓錐曲線定義的運(yùn)用》教學(xué)案例的反思

      圓錐曲線的定義反映了圓錐曲線的本質(zhì)屬性,它是無數(shù)次實(shí)踐后的高度抽象.恰當(dāng)?shù)乩枚x解題,許多時(shí)候能以簡馭繁.因此,在學(xué)習(xí)了橢圓、雙曲線、拋物線的定義及標(biāo)準(zhǔn)方程、幾何性質(zhì)后,再一次強(qiáng)調(diào)定義,學(xué)會(huì)利用圓錐曲線定義來熟練的解題”。

      二、學(xué)生學(xué)習(xí)情況分析

      我所任教班級的學(xué)生參與課堂教學(xué)活動(dòng)的積極性強(qiáng),思維活躍,但計(jì)算能力較差,推理能力較弱,使用數(shù)學(xué)語言的表達(dá)能力也略顯不足。

      三、設(shè)計(jì)思想

      由于這部分知識(shí)較為抽象,如果離開感性認(rèn)識(shí),容易使學(xué)生陷入困境,降低學(xué)習(xí)熱情.在教學(xué)時(shí),借助多媒體動(dòng)畫,引導(dǎo)學(xué)生主動(dòng)發(fā)現(xiàn)問題、解決問題,主動(dòng)參與教學(xué),在輕松愉快的環(huán)境中發(fā)現(xiàn)、獲取新知,提高教學(xué)效率.

      四、教學(xué)目標(biāo)

      1.深刻理解并熟練掌握圓錐曲線的定義,能靈活應(yīng)用定義解決問題;熟練掌握焦點(diǎn)坐標(biāo)、頂點(diǎn)坐標(biāo)、焦距、離心率、準(zhǔn)線方程、漸近線、焦半徑等概念和求法;能結(jié)合平面幾何的基本知識(shí)求解圓錐曲線的方程。

      2.通過對練習(xí),強(qiáng)化對圓錐曲線定義的理解,提高分析、解決問題的能力;通過對問題的不斷引申,精心設(shè)問,引導(dǎo)學(xué)生學(xué)習(xí)解題的一般方法。

      3.借助多媒體輔助教學(xué),激發(fā)學(xué)習(xí)數(shù)學(xué)的興趣.

      五、教學(xué)重點(diǎn)與難點(diǎn):

      教學(xué)重點(diǎn)

      1.對圓錐曲線定義的理解

      2.利用圓錐曲線的定義求“最值”

      3.“定義法”求軌跡方程

      教學(xué)難點(diǎn):

      巧用圓錐曲線定義解題

      六、教學(xué)過程設(shè)計(jì)

      【設(shè)計(jì)思路】

      (一)開門見山,提出問題

      一上課,我就直截了當(dāng)?shù)亟o出——

      例題1:(1) 已知A(-2,0), B(2,0)動(dòng)點(diǎn)M滿足|MA|+|MB|=2,則點(diǎn)M的軌跡是( )。

      (A)橢圓 (B)雙曲線 (C)線段 (D)不存在

      (2)已知?jiǎng)狱c(diǎn) M(x,y)滿足(x1)2(y2)2|3x4y|,則點(diǎn)M的軌跡是( )。

      (A)橢圓 (B)雙曲線 (C)拋物線 (D)兩條相交直線

      【設(shè)計(jì)意圖】

      定義是揭示概念內(nèi)涵的邏輯方法,熟悉不同概念的不同定義方式,是學(xué)習(xí)和研究數(shù)學(xué)的一個(gè)必備條件,而通過一個(gè)階段的學(xué)習(xí)之后,學(xué)生們對圓錐曲線的定義已有了一定的認(rèn)識(shí),他們是否能真正掌握它們的本質(zhì),是我本節(jié)課首先要弄清楚的問題。

      為了加深學(xué)生對圓錐曲線定義理解,我以圓錐曲線的定義的運(yùn)用為主線,精心準(zhǔn)備了兩道練習(xí)題。

      【學(xué)情預(yù)設(shè)】

      估計(jì)多數(shù)學(xué)生能夠很快回答出正確答案,但是部分學(xué)生對于圓錐曲線的定義可能并未真正理解,因此,在學(xué)生們回答后,我將要求學(xué)生接著說出:若想答案是其他選項(xiàng)的話,條件要怎么改?這對于已學(xué)完圓錐曲線這部分知識(shí)的學(xué)生來說,并不是什么難事。但問題(2)就可能讓學(xué)生們費(fèi)一番周折—— 如果有學(xué)生提出:可以利用變形來解決問題,那么我就可以循著他的思路,先對原等式做變形:(x1)2(y2)2

      5這樣,很快就能得出正確結(jié)果。如若不然,我將啟發(fā)他們從等式兩端的式子|3x4y|

      5

      入手,考慮通過適當(dāng)?shù)淖冃�,轉(zhuǎn)化為學(xué)生們熟知的兩個(gè)距離公式。

      在對學(xué)生們的解答做出判斷后,我將把問題引申為:該雙曲線的中心坐標(biāo)是 ,實(shí)軸長為 ,焦距為 。以深化對概念的理解。

      (二)理解定義、解決問題

      例2 (1)已知?jiǎng)訄AA過定圓B:x2y26x70的圓心,且與定圓C:xy6x910 相內(nèi)切,求△ABC面積的最大值。

      (2)在(1)的條件下,給定點(diǎn)P(-2,2), 求|PA|

      【設(shè)計(jì)意圖】

      運(yùn)用圓錐曲線定義中的數(shù)量關(guān)系進(jìn)行轉(zhuǎn)化,使問題化歸為幾何中求最大(小)值的模式,是解析幾何問題中的一種常見題型,也是學(xué)生們比較容易混淆的一類問題。例2的設(shè)置就是為了方便學(xué)生的辨析。

      【學(xué)情預(yù)設(shè)】

      根據(jù)以往的經(jīng)驗(yàn),多數(shù)學(xué)生看上去都能順利解答本題,但真正能完整解答的可能并不多。事實(shí)上,解決本題的關(guān)鍵在于能準(zhǔn)確寫出點(diǎn)A的軌跡,有了練習(xí)題1的鋪墊,這個(gè)問題對學(xué)生們來講就顯得頗為簡單,因此面對例2(1),多數(shù)學(xué)生應(yīng)該能準(zhǔn)確給出解答,但是對于例2(2)這樣相對比較陌生的問題,學(xué)生就無從下手。我提醒學(xué)生把3/5和離心率聯(lián)系起來,這樣就容易和第二定義聯(lián)系起來,從而找到解決本題的突破口。

      (三)自主探究、深化認(rèn)識(shí)

      如果時(shí)間允許,練習(xí)題將為學(xué)生們提供一次數(shù)學(xué)猜想、試驗(yàn)的機(jī)會(huì)——

      練習(xí):設(shè)點(diǎn)Q是圓C:(x1)2225|AB|的最小值。 3y225上動(dòng)點(diǎn),點(diǎn)A(1,0)是圓內(nèi)一點(diǎn),AQ的垂直平分線與CQ交于點(diǎn)M,求點(diǎn)M的軌跡方程。

      引申:若將點(diǎn)A移到圓C外,點(diǎn)M的軌跡會(huì)是什么?

      【設(shè)計(jì)意圖】 練習(xí)題設(shè)置的目的是為學(xué)生課外自主探究學(xué)習(xí)提供平臺(tái),當(dāng)然,如果課堂上時(shí)間允許的話,

      可借助“多媒體課件”,引導(dǎo)學(xué)生對自己的結(jié)論進(jìn)行驗(yàn)證。

      【知識(shí)鏈接】

      (一)圓錐曲線的定義

      1. 圓錐曲線的第一定義

      2. 圓錐曲線的統(tǒng)一定義

      (二)圓錐曲線定義的應(yīng)用舉例

      x2y2

      1.雙曲線1的兩焦點(diǎn)為F1、F2,P為曲線上一點(diǎn),若P到左焦點(diǎn)F1的距離為12,求P169

      到右準(zhǔn)線的距離。

      |PF1||PF2|2.P為等軸雙曲線x2y2a2上一點(diǎn), F1、F2為兩焦點(diǎn),O為雙曲線的中心,求的|PO|

      取值范圍。

      3.在拋物線y22px上有一點(diǎn)A(4,m),A點(diǎn)到拋物線的焦點(diǎn)F的距離為5,求拋物線的方程和點(diǎn)A的坐標(biāo)。

      x2y2

      4.(1)已知點(diǎn)F是橢圓1的右焦點(diǎn),M是這橢圓上的動(dòng)點(diǎn),A(2,2)是一個(gè)定點(diǎn),求259

      |MA|+|MF|的最小值。

      x2y211(2)已知A(,3)為一定點(diǎn),F(xiàn)為雙曲線1的右焦點(diǎn),M在雙曲線右支上移動(dòng),當(dāng)9272

      1|AM||MF|最小時(shí),求M點(diǎn)的坐標(biāo)。 2

      x2

      (3)已知點(diǎn)P(-2,3)及焦點(diǎn)為F的拋物線y,在拋物線上求一點(diǎn)M,使|PM|+|FM|最小。 8

      x2y2

      5.已知A(4,0),B(2,2)是橢圓1內(nèi)的點(diǎn),M是橢圓上的動(dòng)點(diǎn),求|MA|+|MB|的最259

      小值與最大值。

      七、教學(xué)反思

      1.本課將借助于“POWERPOINT課件”,將使全體學(xué)生參與活動(dòng)成為可能,使原來令人難以理解的抽象的數(shù)學(xué)理論變得形象,生動(dòng)且通俗易懂,同時(shí),運(yùn)用“多媒體課件”輔助教學(xué),節(jié)省了板演的時(shí)間,從而給學(xué)生留出更多的時(shí)間自悟、自練、自查,充分發(fā)揮學(xué)生的主體作用,這充分顯示出“多媒體課件”與探究合作式教學(xué)理念的有機(jī)結(jié)合的教學(xué)優(yōu)勢。

      2.利用兩個(gè)例題及其引申,通過一題多變,層層深入的探索,以及對猜測結(jié)果的檢測研究,培養(yǎng)學(xué)生思維能力,使學(xué)生從學(xué)會(huì)一個(gè)問題的求解到掌握一類問題的解決方法. 循序漸進(jìn)的讓學(xué)生把握這類問題的解法;將學(xué)生容易混淆的兩類求“最值問題”并為一道題,方便學(xué)生進(jìn)行比較、分析。雖然從表面上看,我這一堂課的教學(xué)容量不大,但事實(shí)上,學(xué)生們的思維運(yùn)動(dòng)量并不會(huì)小。

      總之,如何更好地選擇符合學(xué)生具體情況,滿足教學(xué)目標(biāo)的例題與練習(xí)、靈活把握課堂教學(xué)節(jié)奏仍是我今后工作中的一個(gè)重要研究課題.而要能真正進(jìn)行素質(zhì)教育,培養(yǎng)學(xué)生的創(chuàng)新意識(shí),自己首先必須更新觀念——在教學(xué)中適度使用多媒體技術(shù),讓學(xué)生有參與教學(xué)實(shí)踐的機(jī)會(huì),能夠使學(xué)生在學(xué)習(xí)新知識(shí)的同時(shí),激發(fā)起求知的欲望,在尋求解決問題的辦法的過程中獲得自信和成功的體驗(yàn),于不知不覺中改善了他們的思維品質(zhì),提高了數(shù)學(xué)思維能力。

    《久久伊人精品青青草原日本,亚洲国产小视频精品久久久三级,AAA级久久久精品无码片.doc》
    将本文的Word文档下载到电脑,方便收藏和打印
    推荐度:
    点击下载文档

    【高中數(shù)學(xué)《圓錐曲線定義的運(yùn)用》教學(xué)案例的反思】相關(guān)文章:

    高中數(shù)學(xué)教學(xué)教學(xué)反思11-08

    清澈的湖水教學(xué)案例與反思06-02

    小學(xué)英語教學(xué)反思案例09-21

    小學(xué)綜合實(shí)踐教學(xué)反思案例10-27

    小學(xué)數(shù)學(xué)教學(xué)案例及反思07-22

    小學(xué)數(shù)學(xué)教學(xué)案例與反思07-22

    幼兒園案例與教學(xué)反思11-16

    高中數(shù)學(xué)教學(xué)反思06-12

    高中數(shù)學(xué)教學(xué)反思06-10

    高中數(shù)學(xué)的教學(xué)反思11-21

    在线咨询
    主站蜘蛛池模板: 精品视频无码一区二区三区| 欧美日韩精品一区二区在线播放 | 日韩人妻无码精品无码中文字幕| 国产亚洲精品岁国产微拍精品| 久久精品国产第一区二区| 99精品在线播放| 亚洲av永久无码精品漫画| 国内精品久久久久久久影视麻豆| 2021国产成人精品国产| 亚洲精品国产精品乱码不99| 精品伦精品一区二区三区视频 | 精品久久久久久久久久中文字幕| 国内精品久久久久| 久久青青草原精品国产| 无码国模国产在线无码精品国产自在久国产| 久久精品视频网| 99国产欧美久久久精品蜜芽| 亚洲AV无码久久精品成人| 欧美国产精品久久高清| 国产精品无码一区二区在线观一 | 麻豆国产精品VA在线观看不卡| 日韩精品国产自在久久现线拍 | 精品露脸国产偷人在视频| 91精品国产成人网在线观看| 精品一区二区在线观看| 91精品国产福利在线导航| 欧美精品hdvideosex4k| 亚洲国产精品VA在线看黑人 | 精品精品国产自在久久高清| 国产美女精品一区二区三区| 欧产日产国产精品精品| 久久久久久亚洲精品成人| 无码国产精品一区二区免费模式| 综合在线视频精品专区| 中文精品99久久国产| 午夜国产精品无套| 日韩精品无码永久免费网站| 久久久无码精品亚洲日韩软件| 国产综合精品久久亚洲 | 国产精品露脸国语对白| 国产亚洲精品无码成人|

    高中數(shù)學(xué)《圓錐曲線定義的運(yùn)用》教學(xué)案例的反思

      一、教學(xué)內(nèi)容分析

    高中數(shù)學(xué)《圓錐曲線定義的運(yùn)用》教學(xué)案例的反思

      圓錐曲線的定義反映了圓錐曲線的本質(zhì)屬性,它是無數(shù)次實(shí)踐后的高度抽象.恰當(dāng)?shù)乩枚x解題,許多時(shí)候能以簡馭繁.因此,在學(xué)習(xí)了橢圓、雙曲線、拋物線的定義及標(biāo)準(zhǔn)方程、幾何性質(zhì)后,再一次強(qiáng)調(diào)定義,學(xué)會(huì)利用圓錐曲線定義來熟練的解題”。

      二、學(xué)生學(xué)習(xí)情況分析

      我所任教班級的學(xué)生參與課堂教學(xué)活動(dòng)的積極性強(qiáng),思維活躍,但計(jì)算能力較差,推理能力較弱,使用數(shù)學(xué)語言的表達(dá)能力也略顯不足。

      三、設(shè)計(jì)思想

      由于這部分知識(shí)較為抽象,如果離開感性認(rèn)識(shí),容易使學(xué)生陷入困境,降低學(xué)習(xí)熱情.在教學(xué)時(shí),借助多媒體動(dòng)畫,引導(dǎo)學(xué)生主動(dòng)發(fā)現(xiàn)問題、解決問題,主動(dòng)參與教學(xué),在輕松愉快的環(huán)境中發(fā)現(xiàn)、獲取新知,提高教學(xué)效率.

      四、教學(xué)目標(biāo)

      1.深刻理解并熟練掌握圓錐曲線的定義,能靈活應(yīng)用定義解決問題;熟練掌握焦點(diǎn)坐標(biāo)、頂點(diǎn)坐標(biāo)、焦距、離心率、準(zhǔn)線方程、漸近線、焦半徑等概念和求法;能結(jié)合平面幾何的基本知識(shí)求解圓錐曲線的方程。

      2.通過對練習(xí),強(qiáng)化對圓錐曲線定義的理解,提高分析、解決問題的能力;通過對問題的不斷引申,精心設(shè)問,引導(dǎo)學(xué)生學(xué)習(xí)解題的一般方法。

      3.借助多媒體輔助教學(xué),激發(fā)學(xué)習(xí)數(shù)學(xué)的興趣.

      五、教學(xué)重點(diǎn)與難點(diǎn):

      教學(xué)重點(diǎn)

      1.對圓錐曲線定義的理解

      2.利用圓錐曲線的定義求“最值”

      3.“定義法”求軌跡方程

      教學(xué)難點(diǎn):

      巧用圓錐曲線定義解題

      六、教學(xué)過程設(shè)計(jì)

      【設(shè)計(jì)思路】

      (一)開門見山,提出問題

      一上課,我就直截了當(dāng)?shù)亟o出——

      例題1:(1) 已知A(-2,0), B(2,0)動(dòng)點(diǎn)M滿足|MA|+|MB|=2,則點(diǎn)M的軌跡是( )。

      (A)橢圓 (B)雙曲線 (C)線段 (D)不存在

      (2)已知?jiǎng)狱c(diǎn) M(x,y)滿足(x1)2(y2)2|3x4y|,則點(diǎn)M的軌跡是( )。

      (A)橢圓 (B)雙曲線 (C)拋物線 (D)兩條相交直線

      【設(shè)計(jì)意圖】

      定義是揭示概念內(nèi)涵的邏輯方法,熟悉不同概念的不同定義方式,是學(xué)習(xí)和研究數(shù)學(xué)的一個(gè)必備條件,而通過一個(gè)階段的學(xué)習(xí)之后,學(xué)生們對圓錐曲線的定義已有了一定的認(rèn)識(shí),他們是否能真正掌握它們的本質(zhì),是我本節(jié)課首先要弄清楚的問題。

      為了加深學(xué)生對圓錐曲線定義理解,我以圓錐曲線的定義的運(yùn)用為主線,精心準(zhǔn)備了兩道練習(xí)題。

      【學(xué)情預(yù)設(shè)】

      估計(jì)多數(shù)學(xué)生能夠很快回答出正確答案,但是部分學(xué)生對于圓錐曲線的定義可能并未真正理解,因此,在學(xué)生們回答后,我將要求學(xué)生接著說出:若想答案是其他選項(xiàng)的話,條件要怎么改?這對于已學(xué)完圓錐曲線這部分知識(shí)的學(xué)生來說,并不是什么難事。但問題(2)就可能讓學(xué)生們費(fèi)一番周折—— 如果有學(xué)生提出:可以利用變形來解決問題,那么我就可以循著他的思路,先對原等式做變形:(x1)2(y2)2

      5這樣,很快就能得出正確結(jié)果。如若不然,我將啟發(fā)他們從等式兩端的式子|3x4y|

      5

      入手,考慮通過適當(dāng)?shù)淖冃�,轉(zhuǎn)化為學(xué)生們熟知的兩個(gè)距離公式。

      在對學(xué)生們的解答做出判斷后,我將把問題引申為:該雙曲線的中心坐標(biāo)是 ,實(shí)軸長為 ,焦距為 。以深化對概念的理解。

      (二)理解定義、解決問題

      例2 (1)已知?jiǎng)訄AA過定圓B:x2y26x70的圓心,且與定圓C:xy6x910 相內(nèi)切,求△ABC面積的最大值。

      (2)在(1)的條件下,給定點(diǎn)P(-2,2), 求|PA|

      【設(shè)計(jì)意圖】

      運(yùn)用圓錐曲線定義中的數(shù)量關(guān)系進(jìn)行轉(zhuǎn)化,使問題化歸為幾何中求最大(小)值的模式,是解析幾何問題中的一種常見題型,也是學(xué)生們比較容易混淆的一類問題。例2的設(shè)置就是為了方便學(xué)生的辨析。

      【學(xué)情預(yù)設(shè)】

      根據(jù)以往的經(jīng)驗(yàn),多數(shù)學(xué)生看上去都能順利解答本題,但真正能完整解答的可能并不多。事實(shí)上,解決本題的關(guān)鍵在于能準(zhǔn)確寫出點(diǎn)A的軌跡,有了練習(xí)題1的鋪墊,這個(gè)問題對學(xué)生們來講就顯得頗為簡單,因此面對例2(1),多數(shù)學(xué)生應(yīng)該能準(zhǔn)確給出解答,但是對于例2(2)這樣相對比較陌生的問題,學(xué)生就無從下手。我提醒學(xué)生把3/5和離心率聯(lián)系起來,這樣就容易和第二定義聯(lián)系起來,從而找到解決本題的突破口。

      (三)自主探究、深化認(rèn)識(shí)

      如果時(shí)間允許,練習(xí)題將為學(xué)生們提供一次數(shù)學(xué)猜想、試驗(yàn)的機(jī)會(huì)——

      練習(xí):設(shè)點(diǎn)Q是圓C:(x1)2225|AB|的最小值。 3y225上動(dòng)點(diǎn),點(diǎn)A(1,0)是圓內(nèi)一點(diǎn),AQ的垂直平分線與CQ交于點(diǎn)M,求點(diǎn)M的軌跡方程。

      引申:若將點(diǎn)A移到圓C外,點(diǎn)M的軌跡會(huì)是什么?

      【設(shè)計(jì)意圖】 練習(xí)題設(shè)置的目的是為學(xué)生課外自主探究學(xué)習(xí)提供平臺(tái),當(dāng)然,如果課堂上時(shí)間允許的話,

      可借助“多媒體課件”,引導(dǎo)學(xué)生對自己的結(jié)論進(jìn)行驗(yàn)證。

      【知識(shí)鏈接】

      (一)圓錐曲線的定義

      1. 圓錐曲線的第一定義

      2. 圓錐曲線的統(tǒng)一定義

      (二)圓錐曲線定義的應(yīng)用舉例

      x2y2

      1.雙曲線1的兩焦點(diǎn)為F1、F2,P為曲線上一點(diǎn),若P到左焦點(diǎn)F1的距離為12,求P169

      到右準(zhǔn)線的距離。

      |PF1||PF2|2.P為等軸雙曲線x2y2a2上一點(diǎn), F1、F2為兩焦點(diǎn),O為雙曲線的中心,求的|PO|

      取值范圍。

      3.在拋物線y22px上有一點(diǎn)A(4,m),A點(diǎn)到拋物線的焦點(diǎn)F的距離為5,求拋物線的方程和點(diǎn)A的坐標(biāo)。

      x2y2

      4.(1)已知點(diǎn)F是橢圓1的右焦點(diǎn),M是這橢圓上的動(dòng)點(diǎn),A(2,2)是一個(gè)定點(diǎn),求259

      |MA|+|MF|的最小值。

      x2y211(2)已知A(,3)為一定點(diǎn),F(xiàn)為雙曲線1的右焦點(diǎn),M在雙曲線右支上移動(dòng),當(dāng)9272

      1|AM||MF|最小時(shí),求M點(diǎn)的坐標(biāo)。 2

      x2

      (3)已知點(diǎn)P(-2,3)及焦點(diǎn)為F的拋物線y,在拋物線上求一點(diǎn)M,使|PM|+|FM|最小。 8

      x2y2

      5.已知A(4,0),B(2,2)是橢圓1內(nèi)的點(diǎn),M是橢圓上的動(dòng)點(diǎn),求|MA|+|MB|的最259

      小值與最大值。

      七、教學(xué)反思

      1.本課將借助于“POWERPOINT課件”,將使全體學(xué)生參與活動(dòng)成為可能,使原來令人難以理解的抽象的數(shù)學(xué)理論變得形象,生動(dòng)且通俗易懂,同時(shí),運(yùn)用“多媒體課件”輔助教學(xué),節(jié)省了板演的時(shí)間,從而給學(xué)生留出更多的時(shí)間自悟、自練、自查,充分發(fā)揮學(xué)生的主體作用,這充分顯示出“多媒體課件”與探究合作式教學(xué)理念的有機(jī)結(jié)合的教學(xué)優(yōu)勢。

      2.利用兩個(gè)例題及其引申,通過一題多變,層層深入的探索,以及對猜測結(jié)果的檢測研究,培養(yǎng)學(xué)生思維能力,使學(xué)生從學(xué)會(huì)一個(gè)問題的求解到掌握一類問題的解決方法. 循序漸進(jìn)的讓學(xué)生把握這類問題的解法;將學(xué)生容易混淆的兩類求“最值問題”并為一道題,方便學(xué)生進(jìn)行比較、分析。雖然從表面上看,我這一堂課的教學(xué)容量不大,但事實(shí)上,學(xué)生們的思維運(yùn)動(dòng)量并不會(huì)小。

      總之,如何更好地選擇符合學(xué)生具體情況,滿足教學(xué)目標(biāo)的例題與練習(xí)、靈活把握課堂教學(xué)節(jié)奏仍是我今后工作中的一個(gè)重要研究課題.而要能真正進(jìn)行素質(zhì)教育,培養(yǎng)學(xué)生的創(chuàng)新意識(shí),自己首先必須更新觀念——在教學(xué)中適度使用多媒體技術(shù),讓學(xué)生有參與教學(xué)實(shí)踐的機(jī)會(huì),能夠使學(xué)生在學(xué)習(xí)新知識(shí)的同時(shí),激發(fā)起求知的欲望,在尋求解決問題的辦法的過程中獲得自信和成功的體驗(yàn),于不知不覺中改善了他們的思維品質(zhì),提高了數(shù)學(xué)思維能力。