<dfn id="w48us"></dfn><ul id="w48us"></ul>
  • <ul id="w48us"></ul>
  • <del id="w48us"></del>
    <ul id="w48us"></ul>
  • 初中數學說課稿《探索勾股定理》

    時間:2020-10-13 17:58:52 說課稿 我要投稿

    初中數學說課稿《探索勾股定理》

      一、教材分析

    初中數學說課稿《探索勾股定理》

      (一)教材地位:這節課是九年制義務教育初級中學教材北師大版七年級第二章第一節《探索勾股定理》第一課時,勾股定理是幾何中幾個重要定理之一,它揭示的是直角三角形中三邊的數量關系。它在數學的發展中起過重要的作用,在現時世界中也有著廣泛的作用。學生通過對勾股定理的學習,可以在原有的基礎上對直角三角形有進一步的認識和理解。

      (二)教學目標

      知識與能力:掌握勾股定理,并能運用勾股定理解決一些簡單實際問題.

      過程與方法:經歷探索及驗證勾股定理的過程,了解利用拼圖驗證勾股定理的方法,發展學生的合情推理意識、主動探究的習慣,感受數形結合和從特殊到一般的思想.

      情感態度與價值觀:激發學生愛國熱情,讓學生體驗自己努力得到結論的成就感,體驗數學充滿探索和創造,體驗數學的美感,從而了解數學,喜歡數學.

      (三)教學重點:經歷探索及驗證勾股定理的過程,并能用它來解決一些簡單的實際問題。

      教學難點:用面積法(拼圖法)發現勾股定理。

      突出重點、突破難點的辦法:發揮學生的主體作用,通過學生動手實驗,讓學生在實驗中探索、在探索中領悟、在領悟中理解.

      二、教法與學法分析:

      學情分析:七年級學生已經具備一定的觀察、歸納、猜想和推理的能力.他們在小學已學習了一些幾何圖形的面積計算方法(包括割補、拼接),但運用面積法和割補思想來解決問題的意識和能力還不夠.另外,學生普遍學習積極性較高,課堂活動參與較主動,但合作交流的能力還有待加強.

      教法分析:結合七年級學生和本節教材的特點,在教學中采用“問題情境----建立模型----解釋應用---拓展鞏固”的模式,選擇引導探索法。把教學過程轉化為學生親身觀察,大膽猜想,自主探究,合作交流,歸納總結的過程。

      學法分析:在教師的組織引導下,學生采用自主探究合作交流的研討式學習方式,使學生真正成為學習的主人.

      三、教學過程設計

      1.創設情境,提出問題

      2.實驗操作,模型構建

      3.回歸生活,應用新知

      4.知識拓展,鞏固深化

      5.感悟收獲,布置作業

      (一)創設情境提出問題

      (1)圖片欣賞勾股定理數形圖1955年希臘發行美麗的勾股樹2002年國際數學的一枚紀念郵票大會會標

      設計意圖:通過圖形欣賞,感受數學美,感受勾股定理的.文化價值.

      (2)某樓房三樓失火,消防隊員趕來救火,了解到每層樓高3米,消防隊員取來6.5米長的云梯,如果梯子的底部離墻基的距離是2.5米,請問消防隊員能否進入三樓滅火?

      設計意圖:以實際問題為切入點引入新課,反映了數學來源于實際生活,產生于人的需要,也體現了知識的發生過程,解決問題的過程也是一個“數學化”的過程,從而引出下面的環節.

      (二)、實驗操作模型構建

      1.等腰直角三角形(數格子)2.一般直角三角形(割補)

      問題一:對于等腰直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面積有何關系?

      設計意圖:這樣做利于學生參與探索,利于培養學生的語言表達能力,體會數形結合的思想.

      問題二:對于一般的直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面積也有這個關系嗎?(割補法是本節的難點,組織學生合作交流)

      設計意圖:不僅有利于突破難點,而且為歸納結論打下基礎,讓學生的分析問題解決問題的能力在無形中得到提高.

      通過以上實驗歸納總結勾股定理.

      設計意圖:學生通過合作交流,歸納出勾股定理的雛形,培養學生抽象、概括的能力,同時發揮了學生的主體作用,體驗了從特殊——一般的認知規律.

      (三).回歸生活應用新知

      讓學生解決開頭情景中的問題,前呼后應,增強學生學數學、用數學的意識,增加學以致用的樂趣和信心.

      (四)、知識拓展鞏固深化

      基礎題,情境題,探索題.

      設計意圖:給出一組題目,分三個梯度,由淺入深層層練習,照顧學生的個體差異,關注學生的個性發展.知識的運用得到升華.

      基礎題:直角三角形的一直角邊長為3,斜邊為5,另一直角邊長為X,你可以根據條件提出多少個數學問題?你能解決所提出的問題嗎?

      設計意圖:這道題立足于雙基.通過學生自己創設情境,鍛煉了發散思維.

      情境題:小明媽媽買了一部29英寸(74厘米)的電視機.小明量了電視機的屏幕后,發現屏幕只有58厘米長和46厘米寬,他覺得一定是售貨員搞錯了.你同意他的想法嗎?

      設計意圖:增加學生的生活常識,也體現了數學源于生活,并用于生活。

      探索題:做一個長,寬,高分別為50厘米,40厘米,30厘米的木箱,一根長為70厘米的木棒能否放入,為什么?試用今天學過的知識說明。

      設計意圖:探索題的難度相對大了些,但教師利用教學模型和學生合作交流的方式,拓展學生的思維、發展空間想象能力.

      (五)、感悟收獲布置作業:

      這節課你的收獲是什么?

      作業:1、課本習題2.12、搜集有關勾股定理證明的資料.

      板書設計探索勾股定理

      如果直角三角形兩直角邊分別為a,b,斜邊為c,那么

      設計說明::1.探索定理采用面積法,為學生創設一個和諧、寬松的情境,讓學生體會數形結合及從特殊到一般的思想方法.

      2.讓學生人人參與,注重對學生活動的評價,一是學生在活動中的投入程度;二是學生在活動中表現出來的思維水平、表達水平.

    《国产精品黄页免费高清在线观看,四虎最新永久在线精品免费,国产综合成人色产三级高清在线精品发布.doc》
    将本文的Word文档下载到电脑,方便收藏和打印
    推荐度:
    点击下载文档

    【初中數學說課稿《探索勾股定理》】相關文章:

    初中數學《勾股定理》優秀說課稿(通用5篇)05-29

    數學必考的勾股定理考點08-30

    初中數學說課稿-《數軸》11-21

    初中數學優秀說課稿《垂線》11-15

    初中數學新教材教學探索的反思03-06

    初中數學說課稿(15篇)11-04

    初中數學說課稿15篇11-04

    初中數學新教材教學探索的教學反思09-10

    初中數學教學中幾種興趣品質的培養探索09-12

    初中數學說課稿:《完全平方公式》11-17

    在线咨询
    主站蜘蛛池模板: 国内精品99亚洲免费高清| 精品久人妻去按摩店被黑人按中出 | 国产精品福利在线观看免费不卡| 亚洲欧美日韩国产精品一区二区| 91人前露出精品国产| 久久久精品人妻一区二区三区四| 国产精品永久免费视频| 久久福利青草精品资源站| 精品亚洲aⅴ在线观看| 日韩欧美亚洲国产精品字幕久久久| 999久久久国产精品| 国语自产拍精品香蕉在线播放| 久久久久99精品成人片直播 | 亚洲精品无码av天堂| 国产精品福利片免费看 | 精品人妻无码专区中文字幕| 国产精品无码av在线播放| 久久精品麻豆日日躁夜夜躁| 免费精品久久久久久中文字幕| 亚洲国产综合91精品麻豆| 99香蕉国产精品偷在线观看| 亚洲国产精品久久电影欧美| 无码精品人妻一区二区三区免费| 国产天天综合永久精品日| 99R在线精品视频在线播放| 精品999在线| 国产精品久久影院| 99re这里只有精品热久久| 国产精品一区二区久久国产| 日韩人妻无码精品一专区| 最新国产精品拍自在线观看| 亚洲爆乳精品无码一区二区| 欧美精品一区二区在线精品| 久久99精品免费一区二区| 国产在线精品一区二区夜色| 国产成人精品怡红院在线观看| 91精品免费久久久久久久久| 亚洲综合一区二区国产精品| 91在线手机精品超级观看| 四虎影视884a精品国产四虎| 亚洲精品线在线观看|

    初中數學說課稿《探索勾股定理》

      一、教材分析

    初中數學說課稿《探索勾股定理》

      (一)教材地位:這節課是九年制義務教育初級中學教材北師大版七年級第二章第一節《探索勾股定理》第一課時,勾股定理是幾何中幾個重要定理之一,它揭示的是直角三角形中三邊的數量關系。它在數學的發展中起過重要的作用,在現時世界中也有著廣泛的作用。學生通過對勾股定理的學習,可以在原有的基礎上對直角三角形有進一步的認識和理解。

      (二)教學目標

      知識與能力:掌握勾股定理,并能運用勾股定理解決一些簡單實際問題.

      過程與方法:經歷探索及驗證勾股定理的過程,了解利用拼圖驗證勾股定理的方法,發展學生的合情推理意識、主動探究的習慣,感受數形結合和從特殊到一般的思想.

      情感態度與價值觀:激發學生愛國熱情,讓學生體驗自己努力得到結論的成就感,體驗數學充滿探索和創造,體驗數學的美感,從而了解數學,喜歡數學.

      (三)教學重點:經歷探索及驗證勾股定理的過程,并能用它來解決一些簡單的實際問題。

      教學難點:用面積法(拼圖法)發現勾股定理。

      突出重點、突破難點的辦法:發揮學生的主體作用,通過學生動手實驗,讓學生在實驗中探索、在探索中領悟、在領悟中理解.

      二、教法與學法分析:

      學情分析:七年級學生已經具備一定的觀察、歸納、猜想和推理的能力.他們在小學已學習了一些幾何圖形的面積計算方法(包括割補、拼接),但運用面積法和割補思想來解決問題的意識和能力還不夠.另外,學生普遍學習積極性較高,課堂活動參與較主動,但合作交流的能力還有待加強.

      教法分析:結合七年級學生和本節教材的特點,在教學中采用“問題情境----建立模型----解釋應用---拓展鞏固”的模式,選擇引導探索法。把教學過程轉化為學生親身觀察,大膽猜想,自主探究,合作交流,歸納總結的過程。

      學法分析:在教師的組織引導下,學生采用自主探究合作交流的研討式學習方式,使學生真正成為學習的主人.

      三、教學過程設計

      1.創設情境,提出問題

      2.實驗操作,模型構建

      3.回歸生活,應用新知

      4.知識拓展,鞏固深化

      5.感悟收獲,布置作業

      (一)創設情境提出問題

      (1)圖片欣賞勾股定理數形圖1955年希臘發行美麗的勾股樹2002年國際數學的一枚紀念郵票大會會標

      設計意圖:通過圖形欣賞,感受數學美,感受勾股定理的.文化價值.

      (2)某樓房三樓失火,消防隊員趕來救火,了解到每層樓高3米,消防隊員取來6.5米長的云梯,如果梯子的底部離墻基的距離是2.5米,請問消防隊員能否進入三樓滅火?

      設計意圖:以實際問題為切入點引入新課,反映了數學來源于實際生活,產生于人的需要,也體現了知識的發生過程,解決問題的過程也是一個“數學化”的過程,從而引出下面的環節.

      (二)、實驗操作模型構建

      1.等腰直角三角形(數格子)2.一般直角三角形(割補)

      問題一:對于等腰直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面積有何關系?

      設計意圖:這樣做利于學生參與探索,利于培養學生的語言表達能力,體會數形結合的思想.

      問題二:對于一般的直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面積也有這個關系嗎?(割補法是本節的難點,組織學生合作交流)

      設計意圖:不僅有利于突破難點,而且為歸納結論打下基礎,讓學生的分析問題解決問題的能力在無形中得到提高.

      通過以上實驗歸納總結勾股定理.

      設計意圖:學生通過合作交流,歸納出勾股定理的雛形,培養學生抽象、概括的能力,同時發揮了學生的主體作用,體驗了從特殊——一般的認知規律.

      (三).回歸生活應用新知

      讓學生解決開頭情景中的問題,前呼后應,增強學生學數學、用數學的意識,增加學以致用的樂趣和信心.

      (四)、知識拓展鞏固深化

      基礎題,情境題,探索題.

      設計意圖:給出一組題目,分三個梯度,由淺入深層層練習,照顧學生的個體差異,關注學生的個性發展.知識的運用得到升華.

      基礎題:直角三角形的一直角邊長為3,斜邊為5,另一直角邊長為X,你可以根據條件提出多少個數學問題?你能解決所提出的問題嗎?

      設計意圖:這道題立足于雙基.通過學生自己創設情境,鍛煉了發散思維.

      情境題:小明媽媽買了一部29英寸(74厘米)的電視機.小明量了電視機的屏幕后,發現屏幕只有58厘米長和46厘米寬,他覺得一定是售貨員搞錯了.你同意他的想法嗎?

      設計意圖:增加學生的生活常識,也體現了數學源于生活,并用于生活。

      探索題:做一個長,寬,高分別為50厘米,40厘米,30厘米的木箱,一根長為70厘米的木棒能否放入,為什么?試用今天學過的知識說明。

      設計意圖:探索題的難度相對大了些,但教師利用教學模型和學生合作交流的方式,拓展學生的思維、發展空間想象能力.

      (五)、感悟收獲布置作業:

      這節課你的收獲是什么?

      作業:1、課本習題2.12、搜集有關勾股定理證明的資料.

      板書設計探索勾股定理

      如果直角三角形兩直角邊分別為a,b,斜邊為c,那么

      設計說明::1.探索定理采用面積法,為學生創設一個和諧、寬松的情境,讓學生體會數形結合及從特殊到一般的思想方法.

      2.讓學生人人參與,注重對學生活動的評價,一是學生在活動中的投入程度;二是學生在活動中表現出來的思維水平、表達水平.